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An algorism for the reduction of the experimental data directly to the three shortest non-coplanar 
translations (Dirichlet triplet) is given. A method is also given for deriving the Dirichlet triplet from 
the Delaunay reduced cell, and analysis of the latter concept shows that the Delaunay cell can have 
interaxial angles arbitrarily near to 180 °. For the Dirichlet triplet, in contrast, the interaxial angles 
can never deviate by more than 30 ° from right angles. 

1. I n t r o d u c t i o n  

In crystallography the choice of a unit cell in a lattice 
is, by convention, governed by the properties of sym- 
metry. This applies to all crystallographic systems 
except the triclinic, where symmetry gives us no 
guidance. 

Delaunay (1933) has given a profound and illumi- 
nating discussion of the geometry of crystal lattices, 
basing his work on the work of Selling (1874) and 
Voronoi (1908) on the reduction of positive definite 
quadratic forms. Delaunay makes great use of the 
'Voronoi domains' (for definition see below, following 
equation (1-6)). 

The lack of uniformity in the presentation of the 
lattice parameters of triclinic substances was realised 
long ago, and a number of suggestions were brought 
forward for a unique choice of the unit cell (Balashov, 
1956; ]3arth & Tunell, 193~; Buerger, 1937, 1942, 
chap. 19, 1956, pp. 107-8); Crowfoot, 1935; Donnay 
& Melon, 1933; Donnay, Tunell & Barth, 1934; 
Donnay, 1943a, b, 1952; Peacock, 1937; Tunell, 1933). 
A particular cell, called the 'Delaunay reduced cell', 
brought to the attention of crystallographers by Ito 
(1950, p. 189), was later described in International 
Tables (1952, p. 530) and used by Donnay & Nowacki 
(1954) as a standard reference cell. 

This cell is obtained from an arbitrary primitive 
cell by a simple and elegant algorism given by Delau- 

nay (1933) and applied to the parameters of Selling. 
These refer to a quartet 

a,  b ,  c, d (1-1) 

of lattice translations, satisfying 

a + b + c + d  = 0 ,  (1.2) 

and such that  any three of them form a primitive 
triplet. The Selling parameters are the six scalar 
products 

a .b ,  a.c,  a .d ,  b .c ,  b .d ,  c . d ,  (1-3) 

which are sufficient to determine the lengths of 
a, b, c, d and the angles between them: for 

a 2 = a . a  = - a . b - a . c - a . d ,  (1.4) 

ab cos y = a . b .  (1-5) 

Selling's reduction theory shows that there is a 
particular quartet (1-1) of lattice vectors satisfying 
(1.2) and such that all the numbers (1.3) are negative 
or zero. In general the reduced quartet is unique 
(save for a possible simultaneous change of sign of all 
four) and gives Selling parameters al l  negative. 

The so-called Delaunay reduced cell is formed from 
the reduced quartet (at, b ,  cr, dr) by discarding one 
of them, say dr, and taking the other three as con- 
current edges of a parallelepiped. Whichever one of 
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the quartet  is discarded, this gives an 'obtuse parallel- 
epiped',  i.e. one having  the three face-angles at one 
corner all obtuse. I t  appears to be usual  to discard the 
longest vector of the  reduced quartet.  

From the definit ion it follows tha t  the 'Delaunay '  
cell m a y  reject a shorter lattice t ranslat ion in favour 
of one much  longer and  there are cases in which even 
the shortest edge of the Delaunay  cell is more than  
twice as long as a discarded translation,  e.g. methylene  
blue iodide t r ihydrate .  The da ta  for this and some 
other substances are given as i l lustrations in Table 2 
below. 

At  the same time, the obtuse angles of the 'Delau- 
nay '  cell m a y  be very  obtuse indeed, reaching 155 ° 
in the case quoted. 

There is no theoretical  l imi t  to these effects. Space 
lattices exis t  (mathematical ly)  for which the ratio of 
the shortest edge of the Delaunay  cell to the shortest 
t ranslat ion in the latt ice is as large as we please, and  
for which one of the face angles of the Delaunay  cell 
is as near  to 180 ° as we please*. One m a y  predict  with 
confidence tha t  crystall ine substances will be en- 
countered in na ture  which give Delaunay  cells even 
more obtuse than  our il lustrations. 

I t  therefore seems to us reasonable to draw atten- 
t ion to the more compact  reduced cell of Dirichlet  
(1850); see also Niggli (1928, p. 111). This cell has 
three shortest t ranslat ions for its edges and its axial  
angles cannot deviate  by  more t han  30 ° from right  
angles. 

The figures at the end of Table 2 show tha t  the 
Dirichlet cell is obtained more easily than  the Delau- 
nay  cell from the da ta  published. 

There is another  a rgument  in favour of the Dirichlet  
cell ra ther  t han  the De launay  one as a s tandard  
reference cell. Wi th  the  Delaunay  cell as s tandard,  
a cell with angles (say) 100 °, 110 °, 9003 ' is to be ac- 
cepted, but  one with angles 100 °, 110 °, 89 ° 57' is to 
be rejected. We believe tha t  the number  of doubtful  
cases, and of cases in which thermal  changes ti l t  the  
balance, is going to be greater if the Delaunay  cell is 
used as s tandard  t han  if the Dirichlet  cell is adopted:  
certainly Crystal Data  (Donnay & Nowacki, 1954) 
shows quite a s ignif icant  number  of triclinic sub- 
stances with angles which have not  been dist inguished 
from 90 ° . 

For this  reason we shall  give in § 3 an  a l ternat ive  
algorism leading direct ly to the Dirichlet  cell, and  in 
§ 4 rules for obtaining the Dirichlet  cell from the Delau- 
nay  one, where these are distinct.  

The relat ion between these two cells m a y  also be 
expressed in terms of the Voronoi domains of the lat- 
tice. Given a latt ice of points 

* Starting with three mutually perpendicular vectors 
a, b, c, we can by slightly tilting them ensure that the Selling 
reduced quartet is 

c--a, a--b, b, - -c .  
If now a is very short compared with b and c, the Delaunay 
cell will have a face angle nearly 180 °. 

r = ruvw = u a + v b + w c ,  (1-6) 

where u, v, w run  through all integer values, one 
at taches to each latt ice point  ruvw the domain  Vu~.w 
of points which are nearer to raw than  any  other 
lat t ice point. I t  is clear tha t  the domains Vu~,~ do 
not  overlap, fill space, are mutua l ly  congruent, and 
all have the same orientation. Quite apar t  from rea- 
sons of pure mathemat ics ,  there are physical  reasons 
for t reat ing Vuv~: for example,  in m a n y  pure metals  
Vuv~ is evident ly  the region of space in which the 
influence of the atom at  r=,~ predominates  (cf. Motsok 
(1929) on the relation between the lattice, the corre- 
sponding space-filling polyhedra,  and  the approximate  
'shape'  of the atom). 

In  general, a Voronoi domain  is bounded by seven 
pairs of parallel  planes:  these are normal  to the seven 
vectors 

at, br, cr, dr, (1-7) 

b r ~ - C r  = - a t - d r  , 
Cr + a r  = - -b  r - d  r ,  J a r  -}- b r  = - Cr - -  d r  • 

(1.8) 

The edges of the Dirichlet  cell are in fact the three 
shortest non-coplanar  of these seven vectors and  at  
most  one of the three comes from (1.8). The edges of 
the Delaunay  cell are the three shortest of the four 
vectors from (1-7), and  in terms of them the various 
faces, etc., of the Voronoi domains m a y  be expressed 
algebraically without  having  recourse to different 
algebraic forms in different cases. Thus (being neces- 
sari ly centrosymmetrical)  the faces of a Voronoi 
domain  normal  to the vectors (1-7) are hexagons and  
those normal  to the  vectors (1.8) are parallelograms. 
Since the faces normal  to the shorter latt ice vectors 
tend  to be of greater area it is apparent  tha t  in this  
sense the Delaunay  cell m a y  ignore more than  half  
of the total  surface area of the Voronoi domain,  and 
utilize vectors normal  to t iny  facets of tha t  domain.  

Mathemat ica l  proofs are collected in an Appendix.  

2. The  'three shortest  translations'  and the 
Dirichlet  reduced cel l  

Three latt ice t ranslat ions (a, b, c) are called ' three 
shortest non-coplanar  t ranslat ions '  if 

a is the shortest vector in the lattice, 
b is the shortest vector other t han  ± a ,  
c is the shortest vector not in the plane of a and b. 

Such a tr iplet  will form the edges of a pr imit ive  cell 
(Dirichlet, 1850) and  have the properties 

l a l _ <  Ib [  _< l c  I, (2.1) 

I b l _ < l b  + a l ,  (2-2) 

I c l _ < l c  + a l ,  (2.3) 

l c l _ < l c  :i: b l ,  (2.4) 

Ic I - < [ c = t = a + b l .  (2.5) 
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I t  is obvious tha t  these are necessary conditions for 
three shortest translations; together with the condi- 
tion tha t  (a, b, c) is a primitive triplet, they are also 
sufficient. In fact it follows from (2.1)-(2.5) that ,  for 
any integers (u, v, w), 

l u a + v b + w c [  >_ I c ] unless w = 0 ,  (2.6) 

I ua+vb ] >_ l b I unless v = 0 .  (2.7) 

These results we shall prove in the Appendix. From 
them we get 

l ua+vb+wc[_> I b l  unless v = w = 0 ,  (2.8) 

l ua+vb+wc]_> [ a l  unless u = v = w = 0 ,  (2.9) 

using (2.1) again; and from these results the sufficiency 
of the conditions will follow easily. . 

The conditions (2.1)-(2.5) ensure tha t  (a, b, c) are 
'three shortest translations' ;  the same conditions, but  
with strict inequality throughout, ensure tha t  they 
are ' the three shortest translations',  i.e. tha t  they are 
unique apart  from sign. 

Observe that ,  given a primitive triplet which does 
not satisfy all the conditions (2.1)- (2.5), the particular 
condition which fails tells us precisely how to improve 
the triplet. This is applied in the reduction process in 
§3. 

The Dirichlet reduced cell is a parallelepiped having 
three shortest translations +a ,  ±b ,  ± c  as its edges. 

For Dirichlet's purpose the ambiguities of sign were 
quite irrelevant; and although he adopted an order 
convention equivalent to (2-1), this convention was 
self-evident in his applications. The crystallographer, 
however, needs to distinguish the direction [110] from 
the directions [110], etc. 

For order-convention we propose (2.1). The con- 
venience of this has been pointed out by Balashov 
(1956) and, in the work of Dirichlet, it has by far the 
oldest tradition. Recent practice among crystallo- 
graphers shows no uniform acceptance of any other 
convention: Buerger (1942, p. 346) advocates (2.1). 

Suppose tha t  the plane angles meeting at one corner 
of a parallelepiped are ~, fl, ~,. The corner at the other 
end of the  body-diagonal also gives angles (c~, fl, ~), 
while of the other six corners two give (a, fl', 7'), two 
give (~', fl, 7') and two give (a', fl', 7), where 

~'  = ~ - ~ ,  fl' = ~ - f l ,  7' = ~ - 7 "  

For the general parallelepiped, for which a, fl, 7 are 
all distinct from 90 °, there are just two corners at 
which the three angles are homogeneous, i.e. either all 
acute or all obtuse. In  the first case we speak of an 
acute parallelepiped, in the second case of an obtuse 
one. We take one of the two homogeneous corners of 
the Dirichlet cell, and take the vectors a, b, c drawn 
from this corner along the edges meeting there. 

To the change from one homogeneous corner to the 
other one (which is at the other end of the body- 

diagonal) corresponds a simultaneous change in sign 
of a, b and c. Thus if the one gives a right-handed 
frame (a, b, c), the other gives a left-handed frame. 
Following the usual crystallographic convention, we 
choose the right-handed one. This completes our rule 
of signs. 

We may also express the rule as follows: 

a, b, c form a right-handed frame, 

b.  c, c. a, a.  b have the same sign, 

this last being equivalent to 

c~, fl, 7 are all acute or all obtuse. 

(2-10) 

(2-11) 

(2.12) 

If we have found a triplet (a, b, c) satisfying the 
conditions (2.1)-(2.10), and not satisfying (2.11), the 
three scalar products must include two of one sign 
and one of the opposite s;gn. If b.  c is the 'odd man 
out'  or, in terms of the angles, if a is the odd man out 
(if, for example, ~ is acute and fl, ~ both obtuse), 
then we reverse the signs of both b and c (so tha t  
~, fl, ~' become all acute). 

Note tha t  in producing homogeneity it is the two 
that  have to come into step with the one: the product 

(b.c) (c.a) (a.b) 

is positive for an acute parallelepiped, negative for an 
obtuse one, and its sign cannot be altered by any 
changes of sign of the three vectors. Note further that ,  
in the case cited, homogeneity could be produced 
either by changing the sign of a, or by changing the 
signs of both b and c: we must choose the lat ter  
method in order to keep the frame right-handed. 

To conclude this Section, we would like to mention 
tha t  in a certain sense the Dirichlet triplet is the most 
compact triplet in the lattice. To bring out what we 
mean by this we observe first tha t  when a has been 
chosen, the field of choice for b is restricted, and tha t  
when b has also been chosen, the field of choice for 
c is still further restricted. I t  is logically conceivable, 
therefore, that  the choice of the shortest available a 
might force us to take an unduly long c. In our 
problem, however, this cannot occur. Instead of 
Dirichlet's rule, we could work from the other end. 
We could examine all primitive triplets (a, b, c), 
ordered by (2.1), and take only those for which c, 
the longest vector, was as short as possible. From these 
triplets we could pick out those for which b was as 
short as (now) possible; and finally pick out a triplet, 
from those still left, for which a was as short as 
possible. I t  would be natural  to call a triplet obtained 
in this way the most compact. But  in fact we get in 
this way exactly the same triplet or triplets as by 
Dirichlet's rule. 

After this remark it becomes natural  to ask whether 
the Dirichlet cell is not the most compact, in other 
words, whether there is another primitive parallel- 
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epiped whose diameter (i.e. longest body-diagonal) is 
shorter than the diameter of the Dirichlet cell. Very 
often the Dirichlet cell is the most compact, but  not 
always: for example, the cell corresponding (cf. § 3) 
to the matrix 

20 9 9 )  
9 22 5 
9 5 24 

is in fact a Dirichlet reduced cell of diameter ]/112, 
but  the cell of edges a - b ,  b, c has diameter only V98. 
The margin is never substantial. 

3. T h e  p r o c e s s  of reduct ion  

Suppose tha t  we have a primitive triplet (a o, b o, Co). 
We represent the geometry of this triplet by the 
symmetric matrix* 

(ao) 
M o--  b o . (a  o bo Co) 

Co 

( a° 'a°  a°'b°  a ° ' c ° )  ( A°H° G°) 
= bo.a o b0.b o bo.c o -- H o B o F o , (3.1) 

Co. ao Co. bo Co. Co Go Fo Co 

say. Here A o -- lao[ s is the square of the length of a o, 
while H o = ao.b o --[ao[.]bo].COS 70, where 7o is the 
angle between a o and b o. 

We first seek to improve, i.e. shorten, b o, c o by 
adding to them multiples of ± a  o. In fact we replace 
bo, c o by 

b l = b o + m a o ,  c ~ =  Co+na o, 

where m is the integer nearest to -Ho/A o and n is 
the integer nearest to -Go/A o. Thus our first trans- 
formation is (.) bt = m 1 0 . b 0 (3.2) 

c t n 0 1 c o 

and therefore also (by transposing) 

(at, bl, C l )  = (ao, bo, co). 0 1 0 . (3-3) 
0 0 1  

Notice tha t  the row (1, m, n) in the last matr ix is 
obtained from the row (A o ,H 0,G O ) of M 0 by (i) 
reversing the signs of the non-diagonal elements, 
(fi) dividing through by the diagonal element, (hi) 
taking the nearest integers. 

The new triplet (a t, b t, el) gives a new symmetric 
matrix 

* Only  the  e lements  of m a t r i x  t h e o r y  are needed  in w h a t  
follows; b u t  these are essential.  The  reader  u n f a m i l i a r  w i th  
t h e m  will f ind all t h a t  he needs for  the  presen t  purpose  in 
a book  by  Ai tken  (1939). 
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(AI ol)(a1) 
M t = H t Bt Ft = b t • (at, bt, ct) 

G1 F t  Ct cl (lo0) (1ran) 
= m 1 0 .M o. 0 1 0 . 

n 0 1  0 0 1  
(3.4) 

We next seek to shorten a t, c t by  adding to them 
multiples of bt. In  fact we replace them by 

a 2 = a t + / ' b l ,  c 2 = C l + n ' b l ,  

where l' is the integer nearest to -H1/B1 and n' is 
the integer nearest to -Ft/B r And the geometry of 
the new triplet (a s, b s, cs), in which of course b s = b t, 
is given by the matr ix 

M s =  H s Bg. -P2 = 0 0 .M t. l' 1 n' . (3.5) 
G9 Fs C2 0 1 0 0 1 

Then we t ry  to shorten a s, b s, replacing them by 

a 3 = a2+l"cs,  b 3 = b 2 ÷ m " c 2 ,  

where l" is the integer nearest to -Gs/C s and m" is 
the integer nearest to -Fs/Cs: and we get a formula 
similar to (3-4), (3.5) for the new matr ix M~. 

These operations, which may be performed in any 
order, are in principle to be repeated until they produce 
no further change; we have then found a primitive 
triplet (a, b, c) for whose matrix M 

12F[ <_B, 12G[ <_A, ] 2 H [ _ < A , /  
12Fl < C, [2G] _< C, [2HI _< B .  (3.6) 

If (2.1) happens to hold, i.e. if 

A _< B _< C ,  (3.7) 

then the second row of (3.6) follows from the first, 
while the first row expresses the conditions (2.2), 
(2.3), (2.4) on the face-diagonals of the cell. We have 
only, therefore, to check on (2-5), i.e. to see whether 
one of the four body-diagonals is shorter than c. For  
the body-diagonal 

c' = # a + ~ t b + c ,  (3.8) 

where ~t = ± 1 , / z  = ± 1, we have 

[c'12-C = A+B+2).F+2#G+2~,uH. (3.9) 

If any one of the last three terms in (3.9) is positive, 
the whole expression is positive, by (3.6). Thus (2.5) 
is already satisfied unless both FGH < 0 and 

A+B < [2F]+]2G]+]2H], (3.10) 

in which ease we must apply the transformation (3-8), 
giving ~t the sign opposite to tha t  of F and # the sign 
opposite to tha t  of G. 

If (3-7) does not hold, we proceed analogously. In 
all cases this gives the Dirichlet cell; and we conclude 
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Table  1. Example 

T M T'  N 

- - 1  1 0 | 32 .9  26.4  - - 2 1 . 1  0 1 0 | 32.9 - 6 . 5  11-8 
1 0 1 \--31.1 --21.1 20.8 0 0 1 \--31.1 10.0 --10.3 

0 1 1 ~15.4 8.9 --5.4 0 1 0 --4.6 3.5 ~5-4 
0 0 1 17.2 --5.4 6.9 --2 1 1 3.4 1.5 6-9 

0 1 0 --1"2 5-0 1"5 1 0 2"3 5"0 1"5 
0 0 1 3"4 1"5 6"9 - -  0 1 - -2"0 1"5 6-9 

1 0 0 2.3 5.0 1.5 - - 1  0 0 - - 5 . 0  2.3 1.5 
0 0 1 --2.0 1.5 6.9 0 0 1 --1.5 --2.0 6-9 

5.0 --2-3 --1.5 ) 
--2-3 6.8 --2.0 
--1.5 --2.0 6-9 (a) (010)(11--1)(10--2)(100)(.o) 

b ~ 1 0 0 0 l 0 0 1 1 - -  1 1 0 b o 
c 0 0 1 0 0 1 0 0 1 1 0 1 c o 

= 1 1 - - 1  0 1 1 b o = - - 2  1 - - 2  b o 
0 0 1 1 0 1 c o 1 0 1 Co . 

a = - - b o - - C  o, b = - - 2 a o + b o - - 2  %, c = a o + C  o 

by  app ly ing  the  o rde r -conven t ion  and  rule of signs 
to it. 

I n  the  worked  example  (Table 1), the  first  m a t r i x  
of the  co lumn headed  M is Mo, and  represents  the  
in i t ia l  in format ion .  I t  is the  f irst  to  be wr i t t en  down.  

We t h e n  choose to  t r ans fo rm as in (3.2), using a o 

to  improve  b o and  Co; we could ins tead  have  used 
b 0 to  improve  c o and  a o, as in (3.5), or c o to  improve  
a o a n d  b o. The t r ans fo rming  matr ices  are T O and  its 
t ranspose  To. W h e n  these have  been entered we 
calculate  

N O -- MoT '  o 

and  use i t  to  eva lua te  

M t = ToMoT o = ToN o , 

which  we wri te  down u n d e r n e a t h  M o, r eady  for fu r the r  
reduct ion .  At  the  n e x t  stage we could centre  our  t rans-  
f o r m a t i o n  on  the  d iagonal  e lement  B - - 8 - 9 ,  as in 
(3.5) ; we choose ins tead  to  use c t to  improve  a t and  b t. 
We  calculate  N 1 = M t T  ~ and  t hen  M 2 - - T i N  r At  
th is  stage we f ind  (3-6) a l ready  satisfied, bu t  FGH<O 
and  (3-10) holds.  (Here B + C  mus t  replace A + B ,  
since A is the  greatest . )  Hence  we t r ans fo rm as in 

(8"8); b u t  since a2, no t  c~, is the  longest ,  i t  is as t h a t  
we replace,  and  by  

a 3 ----- a 2 + ~ , b 2 + ~ a c  2 - -  a 2 + b s - c  2 , 

where ~ = ~t/~ has  the  opposi te  sign to  H. Not ice  t h a t  
in  this  s tep T has  a row, and  therefore  T '  has  a column,  
w i th  non-d i agona l  e lements  di f ferent  f rom zero, 
whereas in the  previous  steps i t  was the  o ther  way  
about .  Not ice  also t h a t  these non-d iagona l  e lements  
of T2 have  signs opposi te  to  those  of the  corresponding 
e lements  ( - 1 . 2 ,  +3.4)  of M~. 

The  step f rom M 3 to M e secures s imul t aneous ly  the  
o rde r -conven t ion  and  the  rule  of signs. The  rows and  
columns are rea r ranged  to sa t i s fy  (2-1), and  the  non-  
d iagonal  e lements ,  if no t  a l r eady  of the  same sign, 
are g iven the  sign of the  'odd  m a n  out ' .  I n  our  ex- 
ample,  G a is 'odd m a n  out ' ,  and  a f te r  the  rear range-  
m e n t  H e = - H  a, G e = - E  a, F 4 = + G  3. 

Some skill (or luck) is needed  to  wri te  d o ~  a t  
once the  appropr i a t e  t r ans fo rming  m a t r i x  (T3) for  
this  s tep :  i t  should  have  d e t e r m i n a n t  +1  in order  
t h a t  the  f inal  f rame be r igh t -handed .  I t  is requi red  
only  in order  to  give, wi th  the  correct  signs, the  rela- 
t ion  between the  in i t ia l  and  f inal  t r ip le t s :  this  is in  
our  case (a) (') b = T3T~TtT o. b o , 

c c o 

and this is computed in the last part of our worked 
example. 

4. F r o m  D e l a u n a y  c e l l  t o  D i r i c h l e t  c e l l *  

I f  De launay ' s  algorism has  been used, i t  gives a q u a r t e t  
(1.1) of la t t ice  t r ans la t ions  sa t i s fy ing (1.2) and  for  

which  the  Selling pa ramete r s  (1.3) have  been com- 
pu t ed  and  are all negat ive .  I n  the  m a t r i x  

M * =  b . (a, b, c, d) = H B F V (4-1) 
c G .F C W ' 
d U V W D  

* In a very recent paper, Patterson & Love (1957) also 
give rules for obtaining the Dirichlet cell from the Delaunay 
one. Their rules would be equivalent to ours but for an un- 
fortunate error by which all three conditions in their Table 1 
have been stated with the inequalities reversed. 
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F, G, H, U, V, W a r e  t h e  Se l l i ng  p a r a m e t e r s  a n d  
h a v e  t h e r e f o r e  b e e n  c o m p u t e d ,  w h i l e  A, B, C, D a r e  
g i v e n  b y  t h e  r e l a t i o n s  

A + H + G + U  = 0, . . . ,  . . . ,  . . . ,  (4-2) 

(i.e. e a c h  r o w  of  M *  a d d s  u p  t o  zero) ,  cf. (1.4). A, B, 
C, D a l so  h a v e  b e e n  c o m p u t e d ,  f i r s t  i n  o r d e r  t o  d i s c a r d  
t h e  l o n g e s t  of  t h e  q u a r t e t ,  s a y  d ,  a n d  t h e n  in  o r d e r  
t o  c a l c u l a t e  t h e  e d g e - l e n g t h s  

a n d  a n g l e s  
a =  ~A, b =  ~B, c =  (C 

06 = C O S  - 1  (F/bc), . . . ,  . . .  , 

of t h e  ' D e l a u n a y  r e d u c e d  cel l ' ,  cf. (1.5). W e  m a y  
t h e r e f o r e  s u p p o s e  M *  a l r e a d y  c o m p u t e d ,  a n d  i t  is a t  
t h i s  p o i n t  t h a t  w e  i n t e r r u p t  t h e  w o r k  l e a d i n g  t o  t h e  
D e l a u n a y  cell.  

T o  f ix  t h e  i d e a s ,  s u p p o s e  t h a t  

A < B < C < D .  (4.3) 

T h e r e  a r e  f o u r  cases"  

(i) I f  A+2H < 0 w e  r e p l a c e  b b y  b ' =  a + b ,  re- 
t a i n i n g  a a n d  c. T h e  t r i p l e t  (a,  b ' ,  c) g i v e s  a m a t r i x  

M ,  = 

A A + H  G ) 
A + H  A + 2 H + B  F+G . 

G F+G C 

(ii) I f  A+2G < 0 w e  r e p l a c e  c b y  c '  = a + c .  T h e  
t r i p l e t  (a,  b ,  c ' )  g i v e s  

M ,  = 

A H A+G ) 
H B F + H  . 

A+G F + H  A+2G+C 

(iii) I f  B+2F < 0 w e  r e p l a c e  c b y  c '  = b + c ,  a n d  
t h e  t r i p l e t  (a,  b ,  c ' )  g i v e s  

M ,  = 

A H G+H ) 
H B B + F  . 

G+H B + F  B + 2 F + C  

( T h e  cases  (i), (ii), (iii) d o  n o t  o v e r l a p .  F o r  i t  m a y  b e  
s h o w n ,  u s i n g  (4-2) a n d  (4-3), t h a t  t h e  s u m  of  a n y  t w o  
of  t h e  t h r e e  q u a n t i t i e s  A+2H, A+2G, B+2F is pos i -  
t i v e . )  

(iv) I n  t h e  r e m a i n i n g  cases  t h e  D e l a u n a y  cell  is t h e  
D i r i c h l e t  one .  

I n  t h e  f i r s t  t h r e e  cases  t h r e e  s i m p l e  a d d i t i o n s  g i v e  
t h e  n e w  m a t r i x  e l e m e n t s  i n  M ' ,  a n d  t h e  t r i p l e t s  s t a t e d  
g i v e  t h e  D i r i c h l e t  cell.  I n  e a c h  case  w e  h a v e  s t i l l  t o  
m a k e  t h e m  s a t i s f y  o u r  o r d e r - c o n v e n t i o n  a n d  r u l e  of  
s igns .  

F i n a l l y ,  if w e  w i s h  t o  p r e s e n t  t h e  r e s u l t s  in  t h e  f o r m  
(a,  b ,  c),  (~, /~,  ~,), t h e n  w e  h a v e  t o  c a l c u l a t e  o n e  n e w  
l e n g t h  a n d  t w o  n e w  a n g l e s ,  a n d  a lso ,  p o s s i b l y ,  re-  
p l a c e  t h e  t h i r d  a n g l e  b y  i t s  s u p p l e m e n t .  

T a b l e  2. Illustrations 
I n  each of the  following seven illustrations, the  first row gives 
the  dimensions of the experimental  cell, the  second row gives 
those of the  Dirichlet reduced cell and  the  thi rd  row gives 
those of the  Delaunay reduced cell (but wi th  (2-1) as order- 

convention) 

a (h)  b (.4) c (h)  e¢ fl 7 
1 9.029 11"56 5.52 103 ° 49' 101 ° 45' 87 ° 12" 

5.52 9-029 11.56 87 ° 12' 76 ° 11' 78 ° 15' 
9"029 9.575 11.56 95 ° 48' 92 ° 48" 145 ° 39" 

15.10 8.80 7.25 95 ° 23' 92 ° 37' 88 ° 58½' 
7.25 8.80 15.10 88 ° 58½" 87 ° 23' 84 ° 37' 
8.80 10.86 15.10 90 ° 55" 91 ° 1½" 138 ° 22" 

15.25 8.97 7-25 95 ° 00' 92 ° 18' 89 ° 23" 
7.25 8.97 15.25 89 ° 23' 87 ° 42' 85 ° 
8.97 11-03 15-25 91 ° 1' 90 ° 37' 139 ° 6' 

5.30 8.61 16-20 103 ° 107 ° 98 ° 
5.30 8.61 15-46 74 ° 8' 87 ° 39' 82 ° 
5.30 9.46 15.46 103 ° 3' 92 ° 21' 115 ° 42' 

4.653 4-097 35.33 103 ° 51' 95 ° 59' 77 ° 53' 
4.097 4.653 34-30 86 ° 43" 89 ° 34' 77 ° 53" 
4.097 5.517 34-30 92 ° 26" 90 ° 26' 124 ° 27' 

4.588 4.016 20-41 101 ° 12' 102 ° 28' 
4.016 4-588 19-69 87 ° 28" 87 ° 33' 
4.016 4.588 19.93 90 ° 31" 99 ° 9" 

80 ° 04' 
80 ° 04' 
99 ° 56" 

7 16.9 15.8 6.9 98 ° 95 ° 89 ° 
6.9 15.8 16.9 89 ° 85 ° 82 ° 

15-8 16.34 16-9 91 ° 8' 91 ° 155 ° 

1: Yeatmani te ,  (Mn, Zn)lsSb2Si4029 (Palache, Bauer  & Ber- 
man ,  1938). 

2: D i a m m o n i u m  nickel cyanide t r ihydra te ,  

(NH,)2Ni(CN)43 H~O 

(Brasseur & de Rassenfosse, 1941). 
3: Disodium p la t inum cyanide t r ihydra te ,  Na2Pt(CN)43 H20 

(Brasseur & de Rassenfosse, 1941). 
4: DL-Tryptophane dihydrochloride,  CllH121q202.2 HC1 

(Dawson & Mathieson, 1951). 
5: Silver laurate, CllH2aCOOAg (Vand, Ai tken & Campbell,  

1949). 
6: Silver caproate,  CsHllCOOAg (Vand, Ai tken & Campbell,  

1949). 
7: Methylene blue iodide t r ihydra te  C16HlsNaSI.3 H20 

(Taylor, 1935). 

The exper imental  da ta  published for 136 triclinic crystals 
show tha t  

for 85 the  experimental  cell is the  Dirlchlet  cell, 
for 39 the  Dirichlet cell requires one change in the  edges 

of the  exper imenta l  call, and  
for 12 two changes are required. 

The corresponding figures for the  Delaunay reduced cell are 
50, 66, 20. 

A P P E N D I X  

1. S u p p o s e  t h a t  a p r i m i t i v e  t r i p l e t  (a,  b ,  c)  sa t i s -  
f ies  c o n d i t i o n s  (2-1) - (2 .5) .  T h e n  t h e  e l e m e n t s  i n  t h e  
c o r r e s p o n d i n g  m a t r i x  M s a t i s f y  

A < _ B < C ,  (A1) 

1 2 F [ _ < B ,  1 2 G l _ < A ,  ] 2 H ] _ < A ,  (A2) 
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(These express (2.1)-(2.4), but  leave (2.5) unex- 
pressed.) Our first object is to deduce (2.6). Write 

Then 
u ' =  lul, v ' :  Ivl, w ' =  lwl,  

U ~2-at_ Vt2 ~ W ~ 2 -  Vt  W ~ _ W~ U ~ _ U ~ V t 

= ½(V'--W')~+½(W'--U')2+½(U'--V') ~" 
> 0 unless u'  = v' = w ' .  (A3) 

Hence, also, 

v'~ + w ' ~ -  v" w" > 0 unless v' = w' = O . 

Since these expressions are certainly integers, > 0 
means the same as >_ 1. Now suppose w ~: 0 and so 
w' _> 1. Then unless u'  = v' = w , '  

]ua + vb + wc[2= A u~ + Bvg + Cw~ + 2 F v w  + 2Gwu + 2 H u v  

> A u O + B v ' 2  

+ Cw ' 2 -  Bv '  w ' -  A w'  u ' -  A u' v' 

- - A  (u'~+v'2 + w ' 2 - v ' w  ' - w ' u ' - u ' v ' )  

+ ( B - A ) ( v ' 2 + w ' ~ - v ' w ' ) +  ( C - B ) w ' ~  

> _ A + ( B - A ) + ( C - B ) = C ,  (A4) 

]ua+vb+wc] .  ~lc [ .  

I f ,  on the other hand, u' v' ' ~ W ,  

[ u a + v b + w c ]  = w'Jc±a±b]  _>_ ]cl, 

by  (2.5). This proves (2-6); the proof of (2.7) is similar, 
and (2.8), (2.9) are obvious consequences. 

2. To see tha t  (2.1)-(2.5) are sufficient conditions, 
let a ' ,  b ' ,  c'  be any  three non-coplanar vectors be- 
longing to the lattice. Then one at  least of the three 
must be at  least as long as c, since by (2.6) all lattice 
vectors shorter than c must lie in the plane of a and b. 
By  (2.8), at least two of the three must be at  least 
as long as b,, and by (2.9) each of them must  be at 
least as long as a. Thus if we order the three so tha t  

]a'I _< ]b'[ < [e'] ,  
we shall have 

[a'[ > lal, Ib'[ > [bl, ]c'[ >_ [c].  (A5) 

(A5) shows tha t  (a, b, c) are three shortest transla- 
tions, i.e. the conditions are sufficient, and at  the 
same t~me shows tha t  (a, b, c) is a 'most compact'  
triplet of independent translations. I t  is to be noted 

• tha t  in proving (A5) we have not assumed that  
(a', b', c') is a primitive triplet. 

3. As to uniqueness of the three shortest transla- 
tions, this obviously requires strict inequality through- 
out (2.1)-(2.5). To prove tha t  strict inequality through- 
out is sufficient for uniqueness we first sharpen (2-6) 
to the result tha t  

] u a + v b + w c ]  > [cJ (A6) 

unless either w = 0 or u = v = 0 and w = ±1. 
Now if u ' =  v ' =  w',  (A6) is given by (2-5), in 

which, by hypothesis, strict inequality now reigns. 

In  any other case in which w 4= 0, equality in (2-6) 
requires equality throughout in (A4). Equal i ty  in the 
first step requires 

V ' W  r = W ' U '  - - - -  U~V ~ = O ,  

since strict inequality now holds in (A2) ; and equality 
in the last step of (A4) requires w' = 1. This proves 
(A6), with the exceptions stated. 

For a triplet (a', b ' ,  c') to be as compact as (a, b, c), 
i.e. to give equality in (A5), it is therefore necessary 
tha t  c ' =  ± c  and tha t  a ' ,  b '  be in the plane of a 
and b. We may similarly sharpen (2-7) and so show 
that  (a, b, c) are unique, apart  from their signs, either 
as three shortest translations or as most compact 
triplet. 

If (2.1)-(2.5) hold, but  not with strict inequality, 
then it may be shown that  an alternative set (a', b ' ,  c'), 
either as three shortest translations or as most com- 
pact triplet, must  be made up of three of the thirteen 
v e c t o r s  

a, b, c, b±c ,  c±a ,  a i b ,  c i a ± b  

which appear in (2.1)-(2.5). 
4. We shall justify the transformation applied in 

case (i) of § 4. In  tha t  case we had 

A + 2 H  < 0, A < B < C < D ,  

and proposed the triplet (a, b ' ,  c), where b '  = a + b .  
For the corresponding matrix M',  

A '  = A ,  B '  = A + 2 H + B ,  C' = C ,  

F '  = F + G ,  G' = G, H '  = A + H ,  

F ' < 0 ,  G ' < 0 ,  H ' > 0 ,  
B ' + 2 F '  = D - C  > 0, 

[2F' I = - 2 • ' < B ' < B < C = C ' ,  
A +2G = - ( A  + 2 H ) - 2 U  > 0, 

[2G'] = - 2 G  < A = A '  < C =  C', 

2 H ' - A '  < 0, 2 H ' - B '  < 0, 
I2H'] < A',  [2H' I < B'.  

This shows tha t  the new cell is an acute parallel- 
epiped satisfying the face-diagonal conditions (3.6), 
and therefore also the body-diagonal conditions. I t  is 
therefore the Dirichlet cell, though we have stiff to 
apply the order-convention and rule of signs. 

The transformations given for the other cases of 
§ 4 are similarly justified. 

5. To justify our statements about Voronoi domains 
we start  from a Selling reduced quartet,  as in § 4, 
but  make no assumption (4.3) as to the relative 
magnitudes of a, b, c, d, and so shall have complete 
algebraic symmetry.  The point r--" x a + y b + z c  is 
nearer to the origin than to the lattice point e = 
u a + v b + w c  ff 

r . e  < ½e% (A7) 

The Voronoi domain about the origin is defined by  
all the inequalities (A7), in which e runs through all 
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latt ice points other t han  the origin. Now suppose tha t  
a point  r satisfies 

r . e '  < ½e'9. (A8) 

for each of the following 14 values of e': 

=ha, ± b ,  + c ,  ± d ,  

+ ( b + c ) ,  ± ( c + a ) ,  ± ( a + b ) .  
If  

(A9) 

(A10) 

(All) O < u < _ v < _ w ,  
we write 

e = u ( a + b + c ) + ( v - u ) ( b + c ) + ( w - v ) c  

= ulel+ug.e2+uae3, (A12) 

say, where u 1, u s, u s are non-negative integers, and  
el, eg, e a are three of the 14 vectors e', and are neigh- 
bours in the  sense tha t  their  scalar products are posi- 
tive. Hence 

r .  e = u , r .  e~ + uzr.  eg.-t- u3 r . e 3 

< ½~le~ + ½~e~+ ½~3e~ 
J[ 2 9. 2 2 J_~,2~2 
2 u l e l +  ½ u 2 e 2 +  ~ 3 ~ 3  

½(~ l e l - t -~9 . e2+u3e3 )  2 = ½e 2 . 

If  (A l l )  is not  satisfied, bu t  u, v, w are all non- 
negative, we apply  the same argument  with a, b, c 
su i tably  permuted.  If  one of u, v, w is negative, let 
u be the algebraical ly least;  then  express e in terms 
of b, c, d instead of a, b, c, and  argue as before. 
Thus all the  inequali t ies (A7) follow from the 14 
inequali t ies (A8), and  so the Voronoi domain  has at 
most 14 faces 

r . e ' =  ½e '2 . (A13) 

To see tha t  the domain  has in general all these faces, 
we consider the  point  given by  three planes (A13) 
which are neighbours in the above sense, e.g. the above 
set 

c, b + c ,  a + b + c  ( =  - d ) ,  (A14) 

and show tha t  this  point  satisfies the other 11 in- 
equalit ies (A8). We have, for instance, 

r . b  = r .  ( b + c ) - r . c  -- ½(b+c)2-½c 2 < ½b 2, 
21r. (a+c) l  = [ ( a + b + c ) 2 - ( b + c ) 2 + c 2  I 

- ] A + 2 H + 2 G + C  I < A + 2 G + C = l a + c ]  ~. 

I t  follows tha t  the 24 points obtained in this way by  
permut ing  a, b, c, d in (A14) are the corners of the 
domain,  and  so tha t  i t  has indeed all  the 14 planes 
(A13) as faces. The neighbours of - d  form the cycle 

. . . ,  a, a + b ,  b, b + c ,  c, c + a ,  a, . . .  

and so e '  = - d  gives a six-sided face. The neighbours 
of b + c  form the  cycle 

• . . , - a , b , - d , c , - a , . . .  

and so e '  = b + c  gives a four-sided face. 
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